If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + 9x + 363 = 0 Reorder the terms: 363 + 9x + 7x2 = 0 Solving 363 + 9x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 51.85714286 + 1.285714286x + x2 = 0 Move the constant term to the right: Add '-51.85714286' to each side of the equation. 51.85714286 + 1.285714286x + -51.85714286 + x2 = 0 + -51.85714286 Reorder the terms: 51.85714286 + -51.85714286 + 1.285714286x + x2 = 0 + -51.85714286 Combine like terms: 51.85714286 + -51.85714286 = 0.00000000 0.00000000 + 1.285714286x + x2 = 0 + -51.85714286 1.285714286x + x2 = 0 + -51.85714286 Combine like terms: 0 + -51.85714286 = -51.85714286 1.285714286x + x2 = -51.85714286 The x term is 1.285714286x. Take half its coefficient (0.642857143). Square it (0.4132653063) and add it to both sides. Add '0.4132653063' to each side of the equation. 1.285714286x + 0.4132653063 + x2 = -51.85714286 + 0.4132653063 Reorder the terms: 0.4132653063 + 1.285714286x + x2 = -51.85714286 + 0.4132653063 Combine like terms: -51.85714286 + 0.4132653063 = -51.4438775537 0.4132653063 + 1.285714286x + x2 = -51.4438775537 Factor a perfect square on the left side: (x + 0.642857143)(x + 0.642857143) = -51.4438775537 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 6x-2(4y+x)= | | 3.2=28.8-8u | | 2x+4y+.125z=75 | | 10.1=5v-2.4 | | 200/86 | | 481.9/0.61 | | 2x-4x=100 | | 15x-4=3x | | 29.7-8y=4.1 | | f(3k+2)=54k^3+18k^2+12k | | 4x^3+6x^2-24x+1=0.5 | | 14x+11=-1+16x | | 14x+11=-1+16 | | 50-25i/25 | | e^3-7x=1881 | | x+134+x+64=180 | | 6b-7(2b-8)= | | 5ln(5x+6)=26 | | 6b-7-(2b-8)= | | g(x)=[log(4X^3-3X^2)] | | 1/(64/125)^2/3 | | 1/(64/125^2/3) | | (x-6)(x+5)(x-6)= | | 30u^5*w^9+18u*w^2*x^7= | | x/2/3=1/2/1/4 | | 2+5b-2a-b= | | (6x-5)(2-3x)= | | .073=x(.285) | | (216)^8/(6)^3 | | 5(8r+5)-5r=-31+7r | | (216)power8/(6power2)power3 | | 25-32= |